ПРИНЦИП МАКСИМИЗАЦИИ В ЭКОНОМИЧЕСКОМ АНАЛИЗЕ


Само название предмета моей науки - "экономика" - подразумевает экономию или максимизацию. Однако экономика как наука длительное время развивалась в отрыве от проблем экономики как объекта исследования. Действительно, только в последней трети нашего века, уже в период моей научной деятельности, экономическая теория начала активно претендовать на то, чтобы приносить пользу бизнесмену-практику и государственному чиновнику. Однажды великий представитель предыдущего поколения экономистов, А. Пигу из Кембриджского университета, задал риторический вопрос "Может ли кому-нибудь прийти в голову нанять экономиста для управления пивоваренным заводом?" Ну, а сегодня самые модные средства экономического анализа, например исследование операций и теория управления, используются и на государственных, и на частных предприятиях.


* Данная работа П.А. Самуэльсоиа представляет собой Нобелевскую лекцию, прочитанную им 11 декабря 1970 г. в г. Стокгольме (Швеция) на церемонии вручения ему Нобелевской премии по экономике. В текст лекции автором были внесены небольшие изменения и дополнения.

Итак, в самой основе нашего предмета заложена идея максимизации. Мой учитель Йозеф Шумпетер как-то метко заметил, что способность человека действовать как "логическое животное", могущее систематически применять эмпирико-дедуктивный метод, сама по себе является прямым следствием дарвиновской борьбы за выживание. Подобно тому как в этой борьбе развился большой палец человека, мозг человека развивается, сталкиваясь с экономическими проблемами. Высказанная за сорок лет до недавних открытий в этологии,* сделанных Конрадом Лоренцом и Николасом Тинбергеном, эта мысль поражает своей глубиной. Не желая выходить за пределы темы моей лекции, я все же упомяну о более поздней точке зрения, высказанной Шумпетером в работе, в которой он представил читателю новую научную дисциплину - эконометрику (Schumpeter, 1933). Шумпетер писал, что количество начинает изучаться физиками и другими учеными-естественниками на довольно поздней, зрелой стадии развития их научных дисциплин. И поскольку применение количественного подхода отдано, условно говоря, на усмотрение исследователей, то тем больше чести последователям Галилея и Ньютона, использующим математические методы. Однако в экономике, как говорил Шумпетер, сам предмет исследования выступает в количественной форме: уберите численные значения цен или пропорции бартерных обменов - и у вас просто ничего не останется. Счетоводство не использует арифметику, оно само есть арифметика. Ведь на ранней стадии своего развития, согласно Шумпетеру, арифметика была именно счетоводством, точно так же, как геометрия сводилась к землемерным работам.
* Наука о поведении животных.

Я вовсе не хочу создавать у вас впечатление, что экономический анализ использует принцип максимизации прежде всего в связи с необходимостью написания учебников для тех, кто должен профессионально принимать решения. Еще до того, как экономическая наука стала выступать с практическими рекомендациями, мы, экономисты, уже занимались проблемами максимума и минимума. В доминировавшем в течение сорока лет после 1890 г трактате Альфреда Маршалла "Принципы экономической науки"* большое внимание было уделено проблеме оптимального объема производства, при котором чистая прибыль достигает максимума. Но задолго до Маршалла, в 1838 г., О. Курно в своем классическом труде "Исследования математических принципов в теории богатства" применил аппарат дифференциального исчисления к изучению проблемы нахождения объема производства, обеспечивающего максимум прибыли. Вопрос о минимизации затрат также был поставлен более ста лет тому назад. По крайней мере, им занимался фон Тюнен при рассмотрении понятия предельной производительности.


* Русский перевод этой книги, вышедший в 1982 г. в издательстве "Прогресс", был необоснованно озаглавлен ''Принципы политической экономии''.

Сейчас модно говорить о кризисе идентичности. Необходимо избегать ошибок, подобных той, которую приписывают Эдварду Гиббону, в период написания им "Истории упадка и разрушения Римской империи" Гиббон, как утверждают, порой путал себя с Римской империей. В современном театре часто стирается граница между наблюдающими зрителями и играющими актерами, а в современной науке - между наблюдающими учеными и выступающими в качестве объекта наблюдения подопытными морскими свинками (или атомами в квантовой механике). Что касается значения принципов максимума в естественных науках, то я покажу, что отвесная траектория падающего яблока и эллиптическая орбита вращающейся планеты могут быть представлены в виде оптимального решения некоторой специфической задачи математического программирования. Однако вряд ли кто-либо поддастся искушению наделить яблоко или планету свободой выбора или способностью к сознательной минимизации. Тем не менее утверждение о том, что шарик Галилея скатывается по наклонной плоскости, как бы минимизируя интеграл действия или интеграл Гамильтона, представляет ценность для физиков-наблюдателей, стремящихся сформулировать предсказуемые закономерности, присущие явлениям природы.

Почему же ученый находит полезной возможность связать позитивное описание реального поведения с решением задачи максимизации? Этим вопросом я много занимался в начале своей научной деятельности. Со времени своих первых статей, посвященных "выявленным предпочтениям" (Samuelson, 1938a, 1938b, 1948, 1953), и до завершения "Основ экономического анализа" (Samuelson, 1947) я находил эту тему увлекательной. Ученый, как и домашняя хозяйка, никогда не ощущает, что его работа закончена. В последнее время я работаю над очень трудной проблемой анализа стохастической спекулятивной цены. Интересно, например, как изменяются цены на какао на биржах Лондона и Нью-Йорка (Samuelson, 1971). Столкнувшись при этом с неудобоваримой системой нелинейных разностных уравнений и неравенств, я было отчаялся найти в математической литературе доказательство хотя бы существования решения. Но неожиданно проблема облегчилась, когда, роясь в своей памяти, я вспомнил, что мои дескриптивные соотношения могут интерпретироваться как необходимые и достаточные условия вполне определенной задачи о максимуме. Однако я забегу слишком далеко вперед, если сразу же создам у вас впечатление, что принципы максимума имеют ценность просто как удобная подпорка для аналитика. Семьдесят лет назад, когда был учрежден Нобелевский фонд, непревзойденной популярностью пользовались взгляды Эрнста Маха.* Мах, как вы помните, говорил, что цель научной деятельности заключается в "экономном" описании природы. Он вовсе не хотел этим сказать, что создать свою систему мира Ньютона побудила необходимость разработать основы навигации для обеспечения безопасного мореплавания торговых судов. Скорее, он имел в виду, что хорошее объяснение - это простое объяснение, которое легко запомнить и которое увязывается с большим разнообразием наблюдаемых явлений. Было бы ошибкой в духе Гиббона иллюстрировать это деистическими взглядами Мопертюи, в соответствии с которыми законы природы телеологичны. Мах вовсе не говорил, что Мать-Природа - экономист, он лишь утверждал, что учёный, формулирующий законы, которые описывают наблюдаемые явления, в сущности выступает как экономист или просто ведущий себя экономно человек.


* Вне зависимости от ценности концепций Маха с современной точки зрения, мы должны быть благодарны ему за ту роль, которую его идеи сыграли в создании Эйнштейном специальной теории относительности. Хотя с годами Эйнштейн и стал отвергать методологию Маха это не может подорвать ее репутацию.

Я должен отметить, что эти различные роли почти по случайному стечению обстоятельств действительно тесно связаны. http://rudiplom.ru/ Часто физику удаётся найти лучшее, более экономное описание явлений природы, если он способен сформулировать наблюдаемые законы, используя принцип максимума. Экономист часто может получить лучшее, более экономное описание экономического поведения, используя тот же инструментарий.

Позвольте мне проиллюстрировать это очень простыми примерами. Падение Ньютонова яблока может быть описано двумя способами: оно падает на землю с постоянным ускорением; или его положение как функция времени изменяется вдоль кривой, которая минимизирует (от момента начала падения до момента наблюдения) интеграл функции, представляющей собой квадрат мгновенной скорости минус линейная функция положения. "Как, - скажете вы, - Вы серьёзно считаете, что второе объяснение является простым7" Я не буду с этим спорить, замечу только, что для математически подкованного физика выражение

не более сложно, чем х = -g; и он знает, что формулировка принципа Гамильтона в вариационной форме обладает великими мнемоническими свойствами, когда речь идёт о переходе от одной системы координат к другой. Хотя я не физик и не думаю, что многие из моих слушателей - физики, позвольте мне привести более наглядный пример полезности принципа максимума в физике. Свет перемещается в воздухе из одной точки в другую по прямой линии. Подобно случаю с падающим яблоком, это перемещение может быть описано в виде решения задачи вариационного исчисления на нахождение минимума. Но рассмотрим теперь, как свет отражается, попадая на зеркало. Вы можете увидеть и запомнить, что угол падения равен углу отражения. Более наглядным средством, облегчающим понимание этого факта, является принцип наименьшего времени Ферма, который был известен уже Герону и другим учёным Древней Греции. Приведённый ниже чертёж, на котором указаны равные треугольники, говорит сам за себя (рис. 1). Если длина отрезка АВС' явно меньше длины ломаной ADC', то очевидно, что путь АВС (равный АВС') короче и занимает меньше времени, чем любой другой путь, например путь ADC. Вы вправе утверждать, что, хотя представление в виде минимума является удобным, оно ничем не лучше другого. Но пойдите после этой лекции в свою ванную комнату и посмотрите на своё отражение, опустив в воду большой палец ноги. Ваши конечности больше не будут выглядеть прямыми, поскольку скорость распространения света в воде отличается от скорости его распространения в воздухе. Принцип наименьшего времени даёт вам ключ к описанию поведения света в таких условиях, а знание закона Снелла об углах - нет. Кто теперь может сомневаться относительно того, какое из двух научных объяснений лучше?

Теория потребительского спроса

Сказанное выше подводит меня к теории потребительского спроса. В отличие от только что рассмотренной ситуации, когда максимизируется прибыль, здесь мы имеем дело с финансовым ограничением, в пределах которого определяется максимум. До середины 30-х годов теория полезности обнаруживала признаки вырождения в бесплодные тавтологии. Психологически понимаемую полезность или удовлетворенность вряд ли можно было определить, не говоря уже о том, чтобы ее измерить. Экономисты австрийской школы настаивали, что люди максимизируют полезность, но, столкнувшись с необходимостью дать ей определение, тавтологично заявляли, что, как бы люди себя ни вели, они, вероятно, получали максимум удовлетворенности, ибо в противном случае они вели бы себя иначе. Точно та" же мы можем сократить на два дробь, у которой числитель и знаменатель - четные, можно было бы, используя принцип "бритвы Оккама",* полностью вывести за рамки понятие полезности и привести это длинное рассуждение к бессмысленной формулировке "Люди Делают то, что они делают".


* Оккам Уильям (1285-1349)- английский философ-схоласт. Принцип "бритвы Оккама" гласит: "Сущности не следует множить без необходимости", т.е. понятия, не сводимые к интуитивному знанию и не поддающиеся проверке в опыте, должны быть удалены из науки.

Я не слишком преувеличиваю. Правда, русский ученый Слуцкий (Slutsky, 1915) вышел за эти пределы, но его работа, опубликованная в итальянском журнале, осталась незамеченной в хаосе событии первой мировой войны. В более известной работе Парето (Pareto, 1907, 1909) недоставало математического аппарата вейерштрассовой теории условного экстремума. Двумерный анализ кривых безразличия был проведен У. Джонсоном, кембриджским логиком, учившимся с Маршаллом и Уайтхедом. Он, как полагают, оказал влияние на работы по теории вероятностей Дж.М. Кейнса (Keynes, 1921), Фрэнка Рамсея (Ramsey, 1931) и сэра Гарольда Джеффриза (Jeffreys, 1939). Тем не менее, когда я начинал свою научную деятельность, лидирующее положение в разработке теории поведения потребителей занимали сэр Рой Аллен и сэр Джон Хикс (Hicks and Alien, 1934) в Лондонской школе экономики и Генри Шульц- в Чикаго, а работы Слуцкого оставались неизвестными.

С самого начала я стремился установить, какие фальсифицируемые гипотезы* относительно наблюдаемых цен и размеров спроса вытекают из предположения, что потребитель тратит свои ограниченные доходы при данных ценах так, чтобы максимизировать свою относительную полезность (то есть сравнивая варианты по принципу "лучше-хуже" и не приписывая этим "лучше-хуже" никаких числовых значений). Не вдаваясь в подробности, скажу, что идея "выявленного предпочтения" пришла ко мне внезапно в ходе спора с одним из моих учителей, как это бывало со многими из моих лучших идей. Узнав от Леонтьева о кривых безразличия, я нашел им применение в следующем году в курсе международной торговли Хаберлера. Когда он стал возражать против постулирования мною выпуклых кривых безразличия, я неожиданно для самого себя ответил на это: "Ну, если они вогнутые, то индексы Ласпейраса-Пааше в вашей докторской диссертации ничего не стоят".** Далекое от того, чтобы означать reductio ad absurdum, это предложение по зрелом размышлении подсказало, как исследователь мог бы опровергнуть гипотезу о максимизирующем поведении посредством проверки ее в наблюдаемых ситуациях с двумя товарами и ценами. После этого осталось только разработать детали теории выявленного предпочтения.


* П. Самуэльсон опирается здесь на принцип фальсификации, выдвинутый K.P. Поппером, постулирующий потенциальную опровержимость любого утверждения, относимого к науке (Прим. ред.).
** Чтобы понять это представьте себе что вы максимизируете полезность вашего потребления (Qx, Qy,... ) по ценам (Рx, Рy,...) тратя положительный доход РxQx +...=?PQ. Тогда для двух ситуаций (P1,Q1, ?P1Q1) и (Р2, Q2, ?P2Q2) возможность наблюдать одновременно что / ?P1Q1 < 1 и ? P2Q1 /? P2Q2< 1 противоречит ординалистской максимизации относительной полезности. При варианте вместо < отрицание этой возможности есть одна из форм Слабой аксиомы выявленного предпочтения.

Моя ранняя теория выявленного предпочтения сама по себе была совершенно адекватной для исследования проблем с двумя потребительскими товарами. Я продолжал считать, что если мы устраним аналогичные проблемы для выбора из более чем двух ситуаций,* то можно было бы устранить феномен "неинтегрируемости" поля безразличия.


* Используя обозначения предыдущей сноски я вывел, что неинтегрируемость могла бы быть устранена в силу следующей аксиомы: >?PiQi+1 для всех i=1,2,... , n-1 1" исключает "?PnQn >?PnQ1 . При n = 2- это в сущности повторение Слабой аксиомы, при всех n > 2 - это Сильная аксиома Хаутеккера.

В ситуации, подобной данной, когда докладчик обычно уж очень склонен к перечислению своих научных побед, особенно полезно почаще делать паузы, чтобы вспомнить поражения и неудачи Даже с помощью ведущих математиков мира я не смог проверить и доказать истинность вывода, приведенного в последней из сносок, и меня убедили изъять этот материал из опубликованного варианта "Выявленного предпочтения" (Samuelson, 1948) Тем большего почета заслуживает Хендрик Хаутеккер (Houthakker, 1950), который в первой же своей экономической работе сформулировал Сильную аксиому и доказал, что она исключает неинтегрируемость

В 1950 г. я сделал обзор дискуссии по интегрируемости, вернувшись к Парето, к началу века, и еще дальше - к классической диссертации Ирвинга Фишера (1892) (см Fisher, 1925), и даже еще дальше - к извлеченной из забвения работе малоизвестного Антонелли (Antonelli, 1886). В середине 30-х годов, когда я выступил со своей идеей, проблема интегрируемости находилась в настолько неопределенном состоянии, что работавшие в тесном сотрудничестве уже упомянутые сэр Джон Хикс и сэр Рой Аллен резко расходились во взглядах на этот предмет. Теперь, когда осознаны эмпирические проявления неинтегрируемости, большинство теоретиков склонно постулировать интегрируемость. Как пояснить ее смысл? Мой добрый друг Николае Джорджеску-Реген, из классической работы которого я почерпнул так много тонких замечаний относительно проблемы интегрируемости (Georgesku-Roegen, 1936), стал бы доказывать, что невозможно выразить одними лишь словами столь сложные математические соотношения. Я же придерживаюсь противоположного взгляда, потому что математика - это язык и в принципе то, что может постигнуть один простофиля, может постигнуть и другой. Поэтому позвольте мне отослать вас к рис. 2, благодаря которому я могу дать широкую интерпретацию условий интегрируемости для рассмотренной нами фирмы, максимизирующей прибыль и использующей 99 видов ресурсов.

Круто ниспадающие кривые на диаграмме представляют собой функции спроса на первый ресурс когда количество всех остальных ресурсов остается ограниченным, как в краткосрочном периоде у Маршалла. Жирные и более пологие кривые также представляют собой функции спроса на тот же ресурс v1 при ценах p1, но при условии, что цены всех остальных факторов заморожены. Если бы кто-то предложил мне объяснить, что означает интегрируемость, но не позволил при этом использовать язык частных производных, я бы мог проиллюстрировать это свойством пропорциональности площадей на рис. 2. Я могу сказать, что идея такого предложения применительно к экономике пришла мне в голову в связи с некоторыми любительскими изысканиями в термодинамике. Читая чудесно написанное введение в термодинамику Клерка Максвелла, я обнаружил (Samuelson, 1960), что его объяснение существования одной и той же шкалы абсолютной температуры в каждом теле могло бы быть верным только в том случае, если на p-v-диаграмме, на которую я ранее ссылался в связи с принципом Ле Шателье, два семейства кривых - круто ниспадающие, тонкие, и более полого ниспадающие, жирные, - образуют параллелограммы наподобие a, b с, d на рис 2., такие, что

[площадь а] / [площадь b] = [площадь с] / [площадь d]
Так же обстоит дело и с двумя различными экономическими кривыми. Именно вследствие условий интегрируемости Хотеллинга, которые связывают вместе 99 различных функций спроса на факторы, отмеченные выше площади обладают свойством пропорциональности. Заканчивая рассмотрение этого интересного результата, я хотел бы, с вашего позволения, упомянуть еще, что он остается в силе даже тогда, когда, как и в линейном программировании, соответствующие поверхности имеют углы и грани, на которых частные производные не определены однозначно.

Я бы не хотел заканчивать разговор о максимизации функций, не подчеркнув, что все это не следует воспринимать как всего лишь упражнения в логике и математике.* В экономической науке кипят дискуссии о том, стремятся ли корпорации максимизировать свою прибыль. Однако ни одна из спорящих сторон не задается вопросом о том, какое значение для объекта наблюдения имеет наличие или отсутствие той или иной функции, которую он максимизирует. А если выйти за относительно узкие рамки экономики, то я должен признаться, что писания социологов, таких, как Талкотт Парсонс (Parsons, 1949), кажутся мне уж очень пустыми, потому что они, по-видимому, никогда не задаются вопросом о том, какая разница между случаями, когда социальное действие рассматривается как часть системы, максимизирующей ценность, или когда оно вытекает из "функциональной" интерпретации наблюдаемых феноменов.


* В своем отклике на публикацию предыдущего варианта данной лекции Роберт Килтингуорт, аспирант Йельского университета, указал, что в физике часто не проводится особого различия между максимумом и минимумом или для данного случая между экстремумом какого-либо вида и стационарной точкой перегиба. Я вполне согласен с этим и часто имел случай указывать, что для физика типичным является обращение только к <вариационному> аспекту проблемы (см., например, мою статью о причинности и телеологии в экономике в: Lerner(ed.), 1965, р. 99-143, особенно р. 128). Так, я могу бросить мяч, чтобы попасть вам по голове двумя способами: прямой наводкой или бросив его так высоко, чтобы он упал на вас сверху (непрямой наводкой). Первая из траекторий минимизирует интеграл <действия> вторая- нет. Точно так же как природа не терпит пустоты только до уровня давления в 30 дюймов ртутного столба, она оказывается близорукой при нахождении минимума, минимизируя действие лишь на пути до первой сопряженной точки. И в других ситуациях, как, например в случае прохождения света, физик на самом деле не верит, что процесс происходит телеологически: он размышляет о световых волнах, распространяющихся от каждой точки во всех направлениях в соответствии с принципом Гюйгенса, и он ожидает, что такие волны будут в различных точках усиливать или нейтрализовывать друг друга. То, что в геометрической оптике видится как луч света, это, попросту, места, где волны нейтрализуют друг друга в наименьшей степени. На языке экономики это скорее похоже на выдержанные в духе Дарвина рассуждения Армена Алчиана о том, что выживание наиболее приспособленных дает нам феномены, которые выглядят так, как будто порождены проблемой экстремума (Alchian, 1940). Как указал Киллингуорт, ссылаясь на работу А. д'Аспо (d'Aspo, 1939, ch. 18), отсюда вытекает следующее: на моем рис. 1 мы сгибаем зеркало вокруг точки В, сохраняя его наклон к ней, но придавая ему кривизну большую чем кривизна эллипса фокусами которого являются А и С. Тогда фактическая траектория по которой перемещается свет (как это видно от А к В и затем к О) по длине будет наибольшей, а не наименьшей! И в других случаях можно представить фактическую траекторию не минимальной и не максимальной, а попросту стационарной точкой перегиба (своего рода седловой точкой). Если приложить некоторое усилие то как и выше, можно свести ситуацию к случаю сопряженной точки. Ход рассуждений при этом следующий. Разделите одновременно на два, на четыре и т.д. расстояния от В до А и С до тех пор, пока в конце концов не сможете сказать, что конечная траектория, по которой перемещается свет действительно представляет собой минимум. Или в более общем виде, в геометрической оптике для достаточно близких друг к другу точек траектории, по которой перемещается свет, соответствующий интеграл Герона-Ферма-Мопертюи действительно принимает минимальное значение. Следует подчеркнуть что в экономической теории важна именно истинная минимизация так как предполагается что экономические субъекты с самого начала руководствуются некими цепями.

Проблемы, не связанные с максимумом

Мне не хочется выглядеть империалистом и выдвигать претензии на универсальную применимость принципа максимума в теоретической экономике. Есть множество областей, где он просто не применяется. Возьмем для примера мою раннюю работу, посвященную взаимодействию акселератора и мультипликатора (Samuelson, 1939). Это важная тема для макроэкономического анализа. Действительно, как я уже отмечал в другом месте, эта статья чрезвычайно подняла мою репутацию. Конечно, тема была фундаментальной, а математический анализ условий устойчивости давал возможность получить изящное решение на уровне, доступном для понимания как толкового начинающего, так и виртуоза математической экономики. Однако первоначальная спецификация модели принадлежит моему гарвардскому учителю Элвину Хансену, а работы сэра Роя Харрода (Harrod, 1936) и Эрика Лундберга (Lundberg, 1937) ясно указали путь к построению этой модели.

Я рассматриваю здесь связь акселератора и мультипликатора потому, что это типичный пример динамической системы, которую ни в каком полезном смысле нельзя связать с проблемой максимума. Обследуя больного, мы узнаем кое-что и о здоровых, а обследуя здоровых, мы можем также узнать что-то и о больных. Тот факт, что проблема "акселератор-мультипликатор" не может быть связана с максимизацией, сильно затрудняет ее анализ Так, когда один мои коллега был молод, он написал под моим руководством докторскую диссертацию (Eckaus, 1954), обобщив анализ взаимодействия акселератора-мультипликатора для случая многих секторов и многих стран. Это было прекрасное исследование, д-р Эккаус с большой изобретательностью и изяществом выжал из модели все, что можно было выжать. Одновременно он, по-видимому, был первым, кто обнаружил, что отношение величины полезного выпуска к затратам первоклассных интеллектуальных ресурсов было при этом в каком-то смысле разочаровывающим "великой простоты" получилось слишком мало. Добросовестный исследователь должен был указать на широкий круг возможностей, которые могли бы реализоваться, и затратить значительные умственные усилия на классификацию и систематизацию этих возможностей.

Для того чтобы проиллюстрировать действительную неподатливость этой проблемы, позвольте рассказать вам об одной серьезной трудности, возникающей при ее анализе. Представим себе Европу 1970 г. в виде 17-секторного комплекса мультипликаторов и акселераторов, который является устойчивым, то есть мы можем показать, что все его характеристические корни являются демпфирующими и ослабляющими, а не антидемпфирующими и порождающими взрывную динамику. Теперь обратимся к истории и возьмем 1950 г. Коэффициенты модели Европы будут несколько другими, однако мы снова будем считать, что они порождают устойчивую систему. Теперь позвольте мне сообщить вам в точности один бит информации. В 1960 г., который лежит посредине, по чудесному совпадению оказалось, что коэффициенты модели во всех до единого случаях в точности равны средним арифметическим между коэффициентами 1950 и 1970 гг. Что вы сказали бы об устойчивости системы в 1960 г.?

Если мой вопрос не настроил вас на то, что вы столкнетесь с парадоксом, то я уверен, что вашим первым искушением было бы сказать, что это - устойчивая система, находящаяся на полпути от одной устойчивой системы к другой. Однако это не согласовывалось бы с результатами д-ра Эккауса. Парадокс получит объяснение, когда вы узнаете, что детерминантные условия устойчивости системы не определяют область устойчивости, задаваемую через соотношения между коэффициентами системы, как выпуклую (Samuelson, 1947). Следовательно, точка на полпути между двумя точками области может сама оказаться вне этой области. Такой ситуации не возникает в случае максимизирующих систем, которые "ведут себя хорошо".

Полагаю, что сказал достаточно, чтобы показать, что самой трудной частью моей книги "Основы экономического анализа" (Samuelson, 1947) было рассмотрение статики и динамики немаксимизирующих систем.

Динамика и максимизация

Естественно, из этого не следует, что с помощью максимизации нельзя исследовать широкую область динамических процессов. Так, например, рассмотрим динамический алгоритм нахождения вершины горы, который реализуется с помощью "градиентного метода". Его идея заключается в том, что ваша скорость в каком-либо направлении пропорциональна наклону горы в том же самом направлении. Нельзя рассчитывать, что такой метод приведет вас на высочайшую вершину Альп из любой начальной точки, находящейся в Европе. Однако он сходится к точке максимума любой вогнутой поверхности из тех, что фигурируют в школьных учебниках.

Подобно световым лучам в физике, о которых я говорил ранее, оптимальные траектории роста в теориях, выросших из новаторской работы Фрэнка Рамсея, появившейся более сорока лет тому назад (Ramsey, 1928), сами по себе демонстрируют богатство динамических явлений. Такая динамика совсем не похожа, скажем, на ту, которая составила предмет позитивистского анализа связи акселератора с мультипликатором. Может быть, вы помните, что сэр Уильям Гамильтон затратил много лет, пытаясь обобщить понятие комплексного числа на случай более чем двух измерений. Рассказывают, что его семья с сочувствием относилась к его исследованиям кватерниона, и каждый вечер дети приветствовали его по возвращении из астрономической обсерватории вопросом: "Папа, ты умеешь перемножать свои кватернионы?" лишь для того, чтобы получить грустный ответ: "Я умею складывать мои кватернионы, но я не умею их перемножать". Если бы в 30-е годы Ллойд Метцлер и я имели детей, они каждый вечер спрашивали бы нас: "Все ли ваши характеристические корни вели себя хорошо и были устойчивы?" Ибо в те дни, находясь под впечатлением затянувшейся Американской Депрессии и ее нечувствительности к эфемерным государственным дотациям, мы были в какой-то мере во власти догмы устойчивости.

Совершенно иными были мои главные интересы в течение 50-х годов, когда я занимался бесплодными поисками доказательства так называемой "теоремы о магистрали" (Samuelson 1949a, 1960а, 1968b, Samuelson and Solow, 1956; Dorfman, Samuelson and Solow, 1958). Здесь речь тоже идет о модели максимизации, по крайней мере в смысле межвременной эффективности. Когда вы изучаете модель "затраты-выпуск" фон Неймана, вы сталкиваетесь с задачей нахождения минимакса, или седловой точки, подобной той, которая рассматривается в его же теории игр. Это исключает возможность того, что ваши динамические характеристические корни будут демпфироваться. Так что если бы мои дети не относились к моей научной работе с тем чувством, которое можно назвать "снисходительным пренебрежением", то в 50-х годах они должны были бы спрашивать меня "Папа, образуют твои характеристические корни взаимно обратные или противоположные по знаку пары, соответствующие движению по цепной линии вокруг магистральной седловой точки?"

Могу ли я попросить вас о снисхождении? Позвольте мне отклониться от темы и рассказать один анекдот. Я делаю это с некоторым смущением, потому что, когда меня приглашали прочитать лекцию, профессор Лундберг предупредил, что это должна быть серьезная лекция. Хотя и говорят, что я был нахальным молодым человеком, у меня было только одно столкновение с великим Джоном фон Нейманом, который, конечно, был гигантом современной математики и, кроме того, проявил свою гениальность в работе над водородной бомбой, теорией игр и основами квантовой механики. Ради того, чтобы дать представление о его величии, я готов даже с еще большим бесстыдством бросить вызов профессору Лундбергу и рассказать вам анекдот в анекдоте. Кто-то однажды спросил великого йельского математика Какутани: "Вы великий математик?" Какутани скромно ответил: "О, вовсе нет. Я - рядовой трудяга, искатель истины" - "Ну, если вы не великий математик, то кого бы вы назвали таковым?" - спросили его. Какутани думал, думал, а затем, как гласит предание, наконец сказал "Джонни фон Неймана".

И вот с этим Голиафом у меня произошло столкновение. Как-то, а это было в 1945 г., фон Нейман читал лекцию в Гарварде о своей модели общего равновесия. Он заявил, что в ней используется новый математический аппарат, не связанный с традиционным математическим аппаратом физики и теорией экстремумов. Я подал голос из задних рядов, сказав, что это вовсе не отличается от понятия границы издержек упущенной выгоды, используемого в экономической теории, когда при фиксированных количествах всех ресурсов и всех, кроме одного, продуктов общество стремится максимизировать объем выпуска остающегося продукта. Фон Нейман отреагировал на это с быстротой молнии, что было для него характерным: "Вы можете держать пари на одну сигару?" К стыду своему, должен сказать, что в этот раз маленький Давид, поджав хвост, бежал с поля боя. И все же когда-нибудь, когда я войду в ворота Святого Петра, я думаю, что половина сигары мне достанется, но только половина, потому что точка зрения фон Неймана также была обоснованной.

Беглый просмотр современных журналов и учебников показывает, что, в то время как студент, изучающий классическую механику, часто сталкивается со случаями колебаний около положения равновесия (например, маятника), студент-экономист чаще имеет дело с движениями по цепной линии около седловой точки: подобно тому как канат, подвешенный на двух гвоздях, принимает форму цепной линии, выпуклой в сторону земли, так и экономические движения совершаются вдоль цепной линии, выпуклой в сторону магистрали. Я хотел бы здесь напомнить о происхождении слова "магистраль" (Turnpike). Все американцы привыкли к тому, что если нужно попасть из Бостона в Лос-Анджелес, то лучше всего побыстрее доехать до главной магистрали и только в конце путешествия нужно свернуть с нее к пункту назначения. Так же и в экономике для того чтобы обеспечить наиболее эффективное развитие страны, при определенных обстоятельствах следует как можно быстрее вступить на путь максимального и сбалансированного роста, так сказать, "оседлать" эту магистраль, а затем, по окончании, например, 20-летнего периода, свернуть к конечной цели развития. Здесь мы сталкиваемся с интересным эффектом: когда горизонт становится широким, вы проводите большую часть своего времени в пределах малого расстояния от магистрали. Все, больше я не буду произносить это слово, на котором можно сломать язык.

Заключение

Я был не в состоянии дать в одной лекции хотя бы самое поверхностное представление о роли принципов максимума в экономическом анализе. Не смог я составить и репрезентативную выборку из моих собственных интересов в экономической науке или хотя бы в более узкой области, каковой является теория максимизации. Так, одним из предметов моего непреходящего внимания на протяжении ряда лет была "экономика благосостояния". Вместе с моим близким другом Абрамом Бергсоном из Гарварда я пытался понять, о максимизации чего можно вести речь, говоря о "невидимой руке" Адама Смита Например, рассмотрим понятие, которое мы сегодня называем "оптимальностью по Парето" и которое с тем же основанием можно было бы назвать "оптимальностью по Бергсону" - ведь он в 1938 г. вложил ясный смысл в то, что Парето лишь нащупывал, и связал это узкое понятие с более широким понятием социальных норм и функций благосостояния (Bergson, 1938). Как раз недавно я читал статью одного автора из "новых левых". Она написана белым стихом, который, как выяснилось, в высшей степени неэффективен как средство общения, но который истинный ученый должен осилить, если этого требуют интересы науки. Автор подверг уничтожающей критике понятие оптимальности по Парето. Однако когда я переварил его труд, мне показалось, что именно в обществе, достигшем изобилия, где диссидентские группы добиваются возможности вести свой собственный образ жизни, особевно важной становится позиция "дать людям, что они хотят". Автор из поколения "старых левых", занимавшийся социалистической экономикой, призванной удовлетворить потребности людей на грани прожиточного минимума, конечно, в меньшей степени нуждался в понятии оптимальности по Парето, чем современный исследователь общественных процессов в США и Швеции.

Кроме того, особое удовлетворение принесло мне то, что мои работы по экономике благосостояния (Samuelson, 1954; 1955, 1969) позволили пролить свет на проблему анализа общественных благ, поставленную еще Кнутом Викселлем (Wicksell, 1896) и Эриком Линдалем (Lindahl, 1919).

Американский экономист Г. Давенпорт, от которого нас отделяют два поколения (он был лучшим другом Торстена Веблена, и Веблен даже некоторое время жил в угольном подвале его дома), однажды сказал: "Нет причины, почему экономическая теория должна быть монополией реакционеров". Всю свою жизнь я стремился принимать это слова близко к сердцу и сегодня осмеливаюсь повторить их здесь в расчете на ваше сочувственное внимание.







««« Содержание »»»


Популярные лекции
  • По экономике
  • По финансам
  • По праву
Помощь в написании